Wavefront Control Algorithms and Analysis for a Dense Adaptive Optics System
with Segmented Primary Mirror

Mark Milman
Amir Fijany

Jet I'repulsion Laboratory
Cdifornia Ingtitute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

ABSTRACT

This paper presents the development and analysis of a wavefront control strategy for a dense
adaptive optics system with segmented primary mirror. Systems of this type represent a substantial
departure from most conventional adaptive optics systems in that the deformable element is the
segmented primary mirror and the feedback signal includes both the local wavefront tilt and the
relative edge mismatch between adjacent segments. One of the major challenges in designing the
wavefront control system is the large number of subapert ures that must be commanded. A fast
and near optimal agorithm based on the local slope and edge measurements is defined for this
system.




1. Introduction. This paper presents the development and analysis of a wavefront control
scheme for a dense adaptive optics systcm with segmented primary mirror [1--5]. In addition to
the analysis of the controller, connections with optimal controllers and previously studied heuristic
controllers arc established. And, perhaps most importantly, because the systems considered in [2]
involve perhaps tens of thousands of subapertures we introduce “fast” algorithms that will help to
make practical their implementation. These algorithms arc explored more fully in the companion
paper [6].

The controller studied in this paper is derived from the assumption that the wavefront is
locally flat over each subaperture. This assumption leads to a strategy that involves a two-step
implementation, requiring first the local correction for wavefront tilt for each subaperture, followed
by a global correction for the piston error. Conventional AO systems employing a continuous
deformable mirror as the correcting optical clement achicve the piston correction via a wavefront
reconstruction process based on local gradient (tilt) information. The reconstruction process leads
to a discretized Poisson equation with normal boundary conditions to estimate the wavefront.
Because the adaptive optical clement for thissystem is not a continuous surface, a slightly different
path must be taken to correct the wavefront. This process entails the usc of edge displacement
measurcments between adjacent mirror segments to supplement the tilt measurements to fill in the
gaps, so to speak, created by the discontinuous surface. The wavefront control law based on this
formulation is shown to lead to a discretized Poisson equation as wcll. The derived control law
turns out to be identical 1o a control strategy based on the heuristic of first correcting for local
tilt and then minimizing the edge mismatch error in a least squares sense to make the segmented
mirror behave as a membrane, in analogy with continuous deformable mirrors. This particular
strategy has been pursued in several art icles for controlling segmented mirrors [1 —5]. 1 Tere we offer
a dightly different interpretation of this control strategy by connecting it with a global piston
correction. This connection is never made explicit in these papers.

It turns out that this control law is not optimal. The optimal controller exploits the coupling
that exists between the tilt mcasurcment/correction and the edge measurements [7]. We define
t he relationship bet ween this optimal controller and the suboptimal controller described above,
and show that they arc equivalent when there is no tilt measurement error. The simplicity of the
structure of the suboptimal controller achieved by discarding the coupling terms is dramatic, both
in terms of implementation and analysis.

Because the control law is derived from a discretized Poisson equation, we arc able to establish
some a priori error bounds. It is shown that the global rms piston error duc to edge sensing is
approximately of unity magnitude for very large systems consisting of the order of 105 subapertures.
This result is important for setting accuracy requirements on candidate edge sensing devices. Wc
also show that the piston error grows logarithmically with the number of subapertures. Hence,
reducing segment size places tighter requirements on the edge sensor, although rather mildly, The
effect of reducing segment size actually has a more substantial effect on the reconstruction error
duc to tilt error. This growth turns out to be linear with decreasing subaperture size if the number
of sensing photons over the entire aperture is fixed.

The computational aspects of implementing a controller for very large adaptive systems is
truly onc of the tentpoles associated with making these systems practical, Having the control
matrix “in hand” dots not represent the most viable solution to this problem, since a system with
N2 subapertures requires N4 flops for each correction. (For example, the SELENE system [2],
which is envisioned to have approximately 250,000 subapertures, a bandwidth of 100 Iz translates
to approximately 1014 flops/see. ) Itcrative methods such as multigrid to construct approximate
controllers for trading computational accuracy with complexity have been investigated [5]. These
iterat ive methods are generall y nondeterministic in the sense th at obtaining precise a priori error
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bounds is difficult. Here wc introduce a novel implementation concept that is both “fast” and
deterministic by exploiting the relationship between the control law and the discretized Poisson
equation. This implementation requires O(N2logN) floating point operations to implement, where
N2 again denotes the number of subapertures. The algorithm is based on embedding (regular-
izing) the Poisson problem defined over the aperture into a problem defined on a square. This
approach isin spirit similar to capacitance methods for regularizing domains in elliptic problems
[8,9]. However, the approach is unique in that wc fully exploit the specia structure of the lcast
squares formulation and the availability of boundary information to extend the problem to areg-
ular domain. (Capacitance methods arc quite different as they rely on decomposing the domain
into regular subdomains and matching boundary conditions bctween the subdomains. ) Fast solvers
based on the FFT (requiring just O( N2logN) flops) exist for solving the Poisson problem on a
square domain [9, 10]. (A more complete exposition of these algorithms is presented in [6].) Bounds
on the increased covariance of the wavefront cst imate int roduced by t he embedding procedure are
also presented, These bounds indicate the incrcased error to be rather benign, perhaps a,.13
increase for very large systems with 105 subapertures.

2. An idealized problem. Iect w(z) denote the instantaneous wavefront, and let the
scgmented primary surface be represented by the piecewise linear function u(z), :

u(e) = 30 xX(A) @ui(a), (1)

where A denotes the i** segment, x(-) = characteristic function (x(A:)(z) = 1if z € A, zero
otherwise), and u; (z) islinear. Let xi be the centroid of A,. Ideally wc would like to minimize the
wavefront error J,

J :‘]iw(x) - u(z)|dz, A = UA. @
From (2) wc write
J = Z:/Alw(m) — ui(z)|%dz, (3)

and note that it is suflicient to independently minimize the error for each segment.
Now given that u.is linear, and assuming that w is C*(two continuous derivatives), a rea-

sonable control stategy isto choose u: so that
ui(z) = w(z:), and Vui(z:) = Vw(z;). @)

This controller corrects for piston, tip and tilt across each subapcrture. By satisfying (4) wc have
for x € Ay,
lw(z) uwi(z)l <1/2max < (z - z:), W(€)(z 7:) >, (5)

where W (¢) denotes the Hessian of w. Now if wc assume that the distance between adjacent

centroids is h, and the area of the total aperture is d’, the number of segments comprising the
“primary, cal it N isof order N = O(d?/h?). The error Jin (2) is now approximated as

J = Z/A [w(z) — ui(z)|®dz

<12 max WP /A o a*da (©)
~ d?O(h%),



since —

1 &= ate — ops)
\A
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and N = O(d?/h?).Hence, the normalized rms wavefront error is

VI/d? = O(h?) (7)

where the constant is of the order supecaW (&). We note that this controller essentially corrects
for the piston, tip, and tilt across each subaperture. Nell [11] has dervied an expression for the
error as a function of the residual uncorrected Zernike terms of the disturbance, and in this case
has shown the residual error to be approximately .13 radians? of phase based on a Kolmogorov
turbulence spectrum.

3. The nonidealized problem. The idealized situation above is characterized by perfect
reconstruction of the wavefront w(z) followed by the implementation of the control law defined
in (4). This controller presupposes both global knowledge of the wavefront and of the aperture
function u(z). In actual application neither of these is available. But before before considering
this configuration, wc will first treat an intermediate case between the ideal and actual to show
how edge sensing contributes to the wavefront reconstruction problem.

The prototype segmented mirror systcm wc study here is based on the SELENE configuration
[2]. SELENE consists of hexagonal segments arranged in the figure below:

Figure 3.1. Aperture Indexing Scheme

We take the distance between adjacent centroids to be k. Now wc make the following assump-
tions:

(i) w(z) must be estimated from the wavefront tilt mecasurements Vw;; = Vw(i;).

(i) u;; can only be estimated from edge displacement measurcments, €ij» and segment tilt
-measurements 7i; = Vu(zi; ).
Here ¢;; and 7,; are both 2-vectors, cu =[¢g;¢ds)s and 75 =75 7¥]. (In the SELENE setting
wc only measure the difference Vw;; — 7ij. This case will be taken up shortly )

Let @ denote a least squares or mini mum variance estimate of w. (Without loss of generality
wc will assume that @ has been normalized so that 2-i; Wi; = 0.) The geometry in the figure leads
to the edge displacement relationship

€§; = i1 — wij — h/2(7f4q + 1) ®)




for horizontal] y adjacent segments; and for diagonally adjacent segments
} x T
C"‘:/J = u;+lj B uij +2\£/-2(T& 15 + Til,’ - (T':+ 15 + Tij))' (ga)

Because each segment of SELENE has edge sensors on every side, there is another measurement,
corresponding to the southwest diagonal,

h r T
€3 = Uit15-1 — Uij + '2—\/3(7?4 -1 78— (T 1) (9b)

(Wc will ignore this measurcment in the analysis and agorithm development that follows, but
revisit it in [6].) Introduce the difference operator A,

. ﬁ_ | (10)

where

and
Ay = uiy1j - uij (10b)

foru=fu;1 U,.], (i.e, stacking u by rows in the array). Then (8)-(9) can be written as
Au=1">b (11)

where b is a linear combination of the measured tilts. Now let & denote a least squares estimate
(or minimum variance estimate) of u. We will assume again that @ has been normalized so that
Y. 4i;= O. In this intermediate case a compensation scheme can be defined by the local tilt
command, AT,

Ar=Vw- T, 7t =7+Ar (12)

followed by the differential piston command, Au,
Au=0—1, 4% =140+ Au. (13)

Here T, 4+ denote the updated tilt and piston vectors. Note again that the differential command
Au requires the global reconstruction of the wavefront w, while A7 only requires local measure-
ments.

Next wc will treat the more general SELLENF case where wc do not have independent mea-
surements of Vw and -, but only of their diflerence y,

Yij Vwij == Tij. (14)
Note that wc still have the differential tilt command via (12)
AT=y, (15)

but wc cannot usc (13) for the differential piston command because the estimates 4, w cannot be
formed. However, observe that to implement (13) it is only necessary to have an estimate of the
difference w — u. To this end assume that (15) has been implemented so that wc may write

Vw=rT. (16)
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Now since —
Th= = T o), (17

substituting (17) into (8) gives (neglecting the O(h?) term)

hiwigye —wig | Wiy Yy wy
T Uijpt - Uij
G J+1 J 2[ b + N ] (18)
= Uijt = Uij - 1/2{wijpe - wis).
Also observe that
y V20, w‘-—'l—j—"‘” (19
T = —-h—[w,,— Wit1j + \/57”]
since L
Wit Wij + E(T:; 7 T5)- (20)
Hence, Y
2 = -
Ty = = (Wi~ Wiag] T (21)
And consequently,
ij = Wij+1 ij i+1j 425 + Tip; + (wi; — Wig15)
2v2' h h (22)

+ 75— Ty — T
= Uij1 ~ U5~ 1 [2wige; — wij].
Now, wij+1—wi; and Wi41 ;—wij arc close approximations to 1/Z(wij42 —wij;) and 1/2(wiq2; —wij),
respectively. In fact all of these quantities arc just difference approximations to either dw/dx or

Ow/By. The magnitude of their difference is consequently O(h?), with constant again of order
mazeea|W(€)|,i.e. for example

11/2(wige; Wij) ~(wijpr wiz)] < b2 Sgp |W (£)]. (23)

Putting (18), (22), and (23) together wc get

€ Uit ui; (Wit wi) + O(K?) (24)
C?j = Uip1j - Uij B (’U)i'Hj B ’U)ij) + O(’Lz) (25)

Hence, for small ||,
e~ Ay -w), (26)

and the least squares (or minimum variance) estimate of u—w can be obtained directly from the
edge mcasurements after the local tilt corrections have been made. Thus the compensation scheme
becomes:

(i) Implement the differential tilt command via (15)
(i) Estimate 9, v = u -w, from (26) (more on this step in a little bit)
(iiii) Implement the differential piston command via(13)
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It is worthwhile to note that this two step control law can also be interpreted as minimizing
the least squares error in the adjacent edge mismatch after tilt correction has been made. To scc
this suppose the differential tilt correction has been made, and now the objective is to implement
a piston command to minimize the edge error. Lctu® denote the vector of current centroid
displacements. Now recall (8)- (9):

€ Ul u; — /2741 + 75) (8)
h )
Cj - U1 U?j + ;\7—“2‘(71'4711 418 (E + 75))- (9a)

After applying the differential command Au the adjusted edge error is simply

% — 2 g — .

and
+ng = C% + Aui+]j - A'U,,;j.

Minimizing the vector ‘ ¢ = [t¢® *¢¥] in the least squares sense leads to the problem
min|c +- AAul?,
Au
which is precisely the control law defined in Steps (i)--(iii) above.
This control law is very nearly optimal if the wavefront is locally flat over each subaperture.

The proof of this is sketched below. Let w(z) denote the instantaneous wavefront, and let the
instantaneous segmented primary surface be rcprescnted by the piccewise linear function u°(z),

w(2) = ) x(A:)(2)ul()
|

(cf (1)). The objective is to implement a differential command Au(z) of the form

Au(z) = Y x(A)(@) Aui(2)
with each Aua linear function on A to minimize the error

E(J) = l Elw(z)

u0(x) + Au(x)|?dz, A =UA,,

(cf (2).) Here EE denotes the expectation operator, and the requirement is that Au is measurable
with respect to the observed data, that is, it must be a function of the tilt and edge sensor
mcasurcments. Write vi{%) = w(z) — u(z),

o0
vi(z) = ) aiTij(z),
5=0

where for each 1, { T, }52, is a complete orthronormal systcm of functions on A with Tio = piston,

)

Ti1 = tip, and T,= tilt, Since Au;(z) is linear,
A’U.,((L') = Ul + uiITiI+ ui2Ti2'

io’ io
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Thus wc have

K 2 K 00
E(WJ) =3 Blaw; —uisl>+ > Y Blay,
i=1 =0 i=1 j=3
where x denotes the number of subapertures. Let u denote the vector with components %5, and Ict
« denote the vector with components @:5,i =1, .. ..k;73 = O, 1,2. The solution to the optimization
problem is to choose u as the conditional expectation, &, of « given the measurements. Assuming
Qi = v(z;), and [oi1  aie] = Vu(z; ), (this is the assumption that the wavefront is locally planar),
it can be shown that & is the minimum variance solution to the problem

I 0 Vo [y
() (W) -()

Here y and ¢ arc the tilt and edge displacement mcasurcments before correction, and ¥ is the matrix
that kinematically links the tilt measurement to the edge displacements. The control strategy of
first correcting for the tilt, followed by piston correction (or equivaently, minimizing the edge
displaccments) is the solution obtained by estimating Vv from the tilt measurement y aone and
ignoring the edge sensor measurement altogether. The optimal (i.c., minimum variance) solution
(scc [7]) couples the tilt and edge sensor measurements at the considerable expense of complicating
analysis and inhibiting the development of fast solution techniques. Thus wc opt for the suboptimal
least squares solution.

Along these same lines we note that athough incorporating the data ¢* from (9b) is straight-
forward, this too has a deleterious effect in terms of algorithm dcisgn and analysis, The next two
sections describe implementation and analysis of the algorithm described in (i)--(iii) above, saris
the sensor data e*. The subject of utilizing the data c’ is taken up in [6].

4. Estimating u—w. Theimplementation of the control law outlined above requires solving
the least squares problem
min| Az — ¢/, (27)

where A isthe the difference operator defined in (1 O) and c is defined in (24)-(25). On a square
grid this can be accomplished via the usc of fast Poisson solver techniques implemented on serial
or parallel machines since (27) reduces to the discretized Neumann problem

ATAz = AT¢; Az n = Choundary nM=boundary normal

Although the initial aperture geometry may not be square, with a little care the resulting
least squares problem can be transformed to a square. Let © denote the region occupied by the
aperture, and let R denote a square region containing 2. Now A is trivialy extended from € to
R However, extending the forcing term ¢ requires a little more consideration. In the deterministic
setting there arc constraints on how ¢ extends since it is derived from a potential. Specificall y,

“ignoring O(h?) terms,
Z ¢; =0.

closed contour

This constraint can be incorporated in the following way. Suppose wc begin with a solution z.:
defined on R, then ¢,z is dctcrmincd from

€ext = AText.
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Figure 4.1. Regularization Embedding Scheme

NOW if Zezy = X IN 2, then ez = € iN 2, and ce.¢ IS an extension of e satisfying the velocity
constraints. If wc can determine the boundary values of x on €, call this function Zjsa, then the
potential Z.z: can be defined arbitrarily on It — €2, and thereby determining an extention €ext tO €.

From this discussion wc scc that the vector field € can be extended (nonuniquely) to the square
once an estimate on the boundary is obtained. This approach aso works for annular regions since
Hartmann sensor datais suflicient to reconstruct these boundary values as well.

To sce how thisis done let %o,U1,...un denote the boundary values of x on 9. The ujs are
related by the d ifference equat ion

Uig1=Ui + Oi + Ny 1=0,..,N -1 (28)
(0; = slope measurement, 7: = noise) with the periodic condition
up = un +Oon + NN (29)

The least squares solution to this problem is obtained by solving the system

Ru=ff=Jo (30)
where
2 1 0 ...-1 -1 1 0 ... 0
—12 = ...® o -1 0 ... 0
R= AR .. : = SR :
-10...-1%22 0 0 ... —1 1

Now /¢ has null space consisting of the vector [1... 1]7, corresponding to a piston. However,
solutions to this problcm arc easily obtained by imposing a constraint on u. Once u is obtained,
€zt Can be defined with just {9 (the number of points on the boundary 8§2) adds by taking
ZTezt = O 0N 1R — 2, and wc can proceed to solve the Poisson equation.

This embedding procedure will increase the covariance of the estimate. On an N x N sgquare
grid, this covariance grows proportionally to sy [12],

N

=< ] A m )
= — ij - 4 - -2 .
SN E',- W ij 2cosN T COSN-{—I
1.

Asymptotically, sy =O(NZ%logN). To get a handle on how this error grows with the embedding
wc calculated the ratios ss/s4,ss0/840,5160/ 880, and saz0/s160. Each of these ratios corresponds
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to the error variance increase resulting from embedding a square region into another squarec region
of twice the size (four t imes the area). These results arc shown below

ss/ss= 11914, sso/ss0= 1.1617, S160/580= 1.1458, S320/8160= 1.1309.
For comparison the asymptotic cst imates arc
88/84 ~ 1.5, sgo/S40 ~ 1.1879, S160/8s0~ 1.1582, 3320/3160 ~ 1.1366.

In addition to this analytical analysis, wc also did Monte Carlo simulations of the ss/s4 case.
500 simulations were run and wc empirically obtained

sg/s4=1.0698 (Monte Carlo).
Thisresult is slightly better than anticipated by the analytical estimate. The reason for thisis that
the embedding procedure deterministically adds data. Thus a true minimum variance estimator
should very nearly yield a unity ratio for ss/ss. The least squares estimator is suboptimal for
the embedded problem but should nevertheless produce better results than given by the analytical
estimate. As another test wc conducted these same simulations without properly embedding the
problem. We merely extended the gradient field by using zero values outside of the 4 x 4 square.
The results of these Monte Carlo runs were disastrous,
ss/sq4=1.3779 x 10° (Monte Carlo, improper embedding).

5. Error analysis. l.ect @i(z) denote the corrected primary surface. From (3) the error Jis
given by

J = Z /A‘ lw(z:) — (@) + [Vw(z:) - Vi(e))(z — z)+ <z — 2, W(E)(z - ;) > [Pde

’—_Z/ |pi+Ti+CIi|2d33,
i YA

where pi denotes the piston error (p,= w(z:) —4(z:)),7; denotes the tilt error (7: = [Vw(z:) —
Vi(z:)) (x — #i)), and ¢i denotes the quadratic remainder term. Let 2 denote the expectation
operator. Assuming F2(p:) = F(r;) = O, and that ¢: is deterministic wc obtain

EQ) <30 /A (B@2) 4 B(r2) + 28(2) 2 B(2)V2 4 ¢?)da.

The individual terms in the integrand above will be treated in more detail now. Wc first
analyze the piston error
Jpiston = Z/ E(p?)da:.
i YA

Let v(:) = w(®:) - u(Zi). Recall that the control law has the form Au = u + 9. Let o denote a
zero mean random variable representing the actuator piston positioning error. Then

p| :'Ui"t)i + af.
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Assuming a? is independent from the reconstruction error v; — i, wc have
E®?) = E(jvi — %)°) + 0%,

where o2, is the variance of the actuator positioning error. Thus,
}:/ E(p?) =03,d2+2/ E(|v; — 9;|%)dz,
i Jh i YA

where d? denotes the aperture area. The second term on the right above is the reconstruction error
associated with (26). Write (26) as

c= Av+m,
where wc assume that (1) = 0,and E(m") = 624,.1- Here 024, denotes the variance of the edge
sensor measurement. Normalizing by the total aperture area d? wc have the mean square error

1 oy TeageAB) G~ Lo
?ﬁ‘;/‘XiE(lvt—v,de— 5 Eflv, |

0240eA(AD)
= _ﬁgdz_tr(z),
where A (A) denotes the area of the subaperture A and ¥ is the covariance matrix of the estimate
0, _
¥ = E((v-9)"(v-1)).

Now embed the SELENE apcrture into a square aperture with N x N subapertures. An upper
bound for 1r(X) can be developed asd

N
1 -
tT(E)SZXf,’ Aij 42- 200.7\]:1]‘_20081\;2]
i, Y

Taking N = 400, the sum on the right aboveis calculated as
N
}: — = 2.057 x 105,
T /\ij

leading to an rms piston error component

057 X 10
]zMSpiston < g——M Oedge

where M denotes the number of subapertures.
To compute the wavefront error duc to tilt error, wc will assume that

Vw(z;) ~ Vi(z:) = v,

where ¥ is a zero mean random variable with covariance F(Viv;) = 026i5. Note that v represents
the combined Hartmann sensor error and tilt correction error. Thus

E(r})dz = o2 z - zild
[, B =at ] e ™ al

[
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This integral is computed over the hexagonal region A; as
2 13 232
EWi)dr = —o h*A(As).
N 12
Thus the RMS tilt error is given as

13
1 i =y =0t
{MSt It \/;20 }L

Combining these error components wc obtain the mean square wavefront, error

£E(J 2.057 x 10° 13 4 13 2.057 X 10°
-—7(‘?2—)— < 0% —}Tagdge - T500h 200k 5 02, i 0%

-+ fitting error.

If wc shrink the size of the segments so that h — O, wc observe that N grows linearly withh.
And hence because of the asymptotic relationship

N
> =O(N%logN),
ALY

1

the rms piston error will grow as +/TogN. Thus the improvement nceded in the edge sensors to
maintain the same error is rather benign. On the other hand if Hartmann sensors arc used for the
tilt measurement, the error in this mcasurcment is linearly related to the reciprocal of the segment
size. To sce this observe first that tor h < 70,0, = 3nA/16hy/Nphotons, Where X = wavelength,
and Nphotons = NUMber of photons captured over the subapcrture®. NOW Nppotons 1S proportional
to h’. Thus o, is proportional to 1/h.
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